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Effective Hamiltonian for a microwave billiard with attached waveguide
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In a recent work the resonance widths in a microwave billiard with attached waveguide were studied in
dependence on the coupling strength@E. Perssonet al., Phys. Rev. Lett.85, 2478 ~2000!#, and resonance
trapping was experimentally found. In the present paper an effective Hamiltonian is derived that depends
exclusively on billiard and waveguide geometry. Its eigenvalues give the poles of the scattering matrix pro-
vided that the system and environment are defined adequately. Further, we present the results of resonance
trapping measurements where, in addition to our previous work, the position of the slit aperture within the
waveguide was varied. Numerical simulations with the derived Hamiltonian qualitatively reproduce the ex-
perimental data.
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I. INTRODUCTION

In every measurement of the spectroscopic properties
quantum mechanical system, the system must be couple
an environment, unavoidably disturbing its properties. T
is true even without performing a direct measurement, si
most systems such as atomic nuclei are embedded in a
tinuum of decay channels due to which the states of
system have a finite lifetime. As a consequence, the meas
ment always yields a combination of the system proper
and those of the environment.

An efficient tool to tackle this problem is provided b
scattering theory~see@1#!. The scattering matrix can be de
scribed by~see, e.g., Ref.@2#, Chap. 6!

S5122ıV†
1

E2Heff
V, ~1!

where

Heff5H2ıVV†. ~2!

H is the Hamiltonian of the system with discrete eigenvalu
ea . V is the coupling matrix between the discrete states
the system and the channel wave functions of the envir
ment.

Scattering theory was originally introduced in nucle
physics~see Ref.@3#!. In recent years it has been applied
numerous other systems like quantum dots~e.g., @1#! and
microwave cavities@4#. For spectra with high level density
statistical methods yield results such as the distributions
poles in the complex plane@5,6#, the statistics of resonanc
poles, and delay times@7#. But for low level densities devia
tions have been observed and discussed@8–14#. These re-
sults suggest quantum mechanical interference effects
tween the quantum states. They are displayed, e.g., in
transport through quantum dots and microwave cavit
when the leads support only one or few propagating mo
1063-651X/2002/65~6!/066211~10!/$20.00 65 0662
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@15–18#. The interferences show clearly that at low lev
density the individual properties of the resonance states
an important role.

For isolatedresonances the widths of the states are m
smaller than the distances between them. Therefore the
pling matrix elementsVa l are well approximated by the
overlap integrals between the wave functionsca of the dis-
crete states and the channel wave functions in the leads.
energiesEa are given by the eigenvaluesea of the real part
of Heff , and the widthsGa are '2( l(Va l)

2 @19#. This ap-
proximation is justified as long as the poles of theS matrix
are close to the real axis@3#. These poles appear as isolat
resonances of Breit-Wigner shape in the reaction cross
tion. This approach, which is the basis of random mat
theory, can be used also at low level density far from thre
olds.

The situation changes considerably, however, when, a
many physical situations, the resonancesoverlap @8,19,20#.
In such a case, the widths exceed the energetical dista
between the resonances, thus causing a mixing of the r
nance states via the continuum. Solving the eigenvalue e
tion

Heff f̃a5 ẽaf̃a , ~3!

the pole representation of the scattering matrix reads@8,19#

Sll 85Sll 8
dir

22ı(
a

Ṽa l Ṽa l 8

E2 ẽa

, ẽa5Ẽa2
ı

2
G̃a , ~4!

whereSll 8
dir describes the smooth part of the scattering mat

and Ṽa l are the elements of the coupling matrixṼ between
the resonancestates and the channel wave functions. A sim
lar representation of theS matrix was considered in Ref
@21#. In general theVa l depend on the energy of the syste
and thef̃a are complex. Thus, theẽa and Ṽa l are energy
dependent and complex as well. The eigenvalues of the
fective HamiltonianHeff yield the poles of theSmatrix lying

at the solutionsEa5ẼauE5Ea
, Ga5G̃auE5Ea

of the fixed-
©2002 The American Physical Society11-1
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point equations, when the system and environment are
fined adequately. TheṼa l have to be calculated by means
the eigenfunctionsf̃a of Heff as discussed above; see E
~4!. Indeed, theṼa l are complex and energy dependent in
nontrivial manner, as shown numerically for nuclei@22#.

Dramatic changes were found in the wave functions
states with increasing resonance overlapping in a nume
study for the two-channel case in nuclear reactions@23#. As a
result, two states of the system align with the channels
become short lived while the remaining ones decouple m
or less strongly from the continuum of decay channels. T
decoupling from the continuum is calledresonance trapping
@8#. Similar results have been found in calculations for m
ecules@24–26# and atoms@27–29#. In microwave cavities
resonance trapping has been studied theoretically as a f
tion of the opening of the cavity to an attached waveguide
the time delay function and in the mixing and biorthogon
ity of the eigenfunctions of the effective Hamiltonian and
its eigenvalues@30–32#.

In many theoretical studies, the coupling matrixVV† is
assumed to be real and energy independent and the eige
ues of the model HamiltonianHeff

mod5H2ıbVV† are studied
as a function of increasingb. In such a case, the number
short-lived states is exactly equal to the number of open
cay channels and the widths of the trapped states appr
zero for largeb values; see, e.g.,@5,21,24#. In realistic sys-
tems, however, the parameterb cannot increase without limi
@8,33–36#. Furthermore, the number of short-lived stat
may be much larger than the number of open channels
has been shown in calculations for quantum billiards
Bunimovich type with different positions of the leads a
tached to the billiard@17#.

Since there is much confusion in the literature about
concept of resonance trapping, let us first define in what w
the term is used in this paper: Resonance trapping is a
nomenon appearing in open quantum systems. It is cause
the interaction of overlapping resonance states via the c
tinuum of scattering states by which some of the states a
with the channels by trapping other states. Therefore the t
coupling strength is given by

G t5 (
a51

N

G̃a' (
a51

M

G̃a , i.e., (
a5M11

N

G̃a'0, ~5!

where N is the number of states considered, andM is the
number of short-lived states. Due to the reordering proce
taking place in the system, the widths of the states areGa

5G̃auE5Ea
. Resonance trapping occurs at fixed total co

pling strength between the system and environment a
function of some parameter and can be observed if the t
coupling strength is varied.

Hitherto there is only one experimental realization th
has shown resonance trapping. It was found in a microw
billiard with attached waveguide, where the coupli
strength could be controlled by means of a variable slit@37#.

It is the purpose of this paper to show that the situat
met in this experiment is indeed properly described by
effective Hamiltonian of type~2!. In Sec. II we derive the
06621
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effective Hamiltonian for the billiard with an attached wav
guide and in Sec. III A the slit is included into the scatteri
theory. Numerical simulations and experimental results
presented in Secs. III B and III C. The results are summ
rized in the last section.

II. WAVEGUIDE WITHOUT SLIT

Let us consider the situation of a billiard coupled by
waveguide to an environment. There are two limiting ca
for the propagation of the channel modes inside the cavi

~i! Waveguide and billiard have the same width. In th
case the wave can propagate freely into the billiard. Th
are only small corrections from the evanescent modes in
threshold region@38#.

~ii ! The width of the waveguide is much smaller than t
width of the cavity. In this case the wave can propagate o
at the energies of the resonance states. Now the widthsGa of
the statesa are small and theS matrix poles are well de-
scribed by Eq.~1!.

In this paper we investigate the case where the lead
tension is much smaller than the billiard width and a slit
introduced into the lead that can be closed.

Figure 1 shows the setup used in the experiment. We s
with the case that there is no slit within the waveguide. O
can show that the scattering matrixS of the billiard is given
by ~see Appendix A!

S5122ıW†
1

E2Heff
WK, ~6!

where

Heff5H2ıWKW†. ~7!

W is the coupling matrix between the billiard and wavegui
eigenfunctions@see Eq.~A16!# and K is a diagonal matrix
with the wave numberskn5Ak22(np/D)2 for the wave-
guide modes on the diagonal, whereD is the width of the
waveguide. In the experiment only the lowest mode is pro
gating, and all others are evanescent, i.e.,kn5ıln for n>2
@Eq. ~A12!#. We thus have a mapping of the billiard wit
attached waveguide to a scattering problem with an effec
Hamiltonian. In the basis of billiard eigenfunctions the m
trix elements ofHeff read

~Heff!ab5Eadab2ık1Wa1Wb11 (
n52

`

lnWanWbn . ~8!

FIG. 1. Sketch of the billiard with attached waveguide and
within the waveguide (a5285 mm,b5200 mm, r 570 mm, L0

5204 mm,D523.2 mm,L55.5 mm, 16 mm, and 26 mm!.
1-2
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EFFECTIVE HAMILTONIAN FOR A MICROWAVE . . . PHYSICAL REVIEW E 65 066211
The last term,(n52
` lnWanWbn , describes the influence o

evanescent modes. It is nonvanishing only close to a thr
old, as was shown in Refs.@38,39# where a very similar
approach was applied.

It remains to rewrite Eq.~6! as a sum of pole terms ac
cording to the original definition of theS matrix, Eq.~4!, by
which the physical meaning of theS matrix poles is ex-
pressed. In order to stress the differences from the Ha
tonian approach to scattering used in the literature~e.g., Ref.
@33#!, we call this representationpole representationof theS
matrix.

The diagonal coupling matrix elementık1Wa1Wa1 of Heff
induces an uncertainty in the energy of the statea due to
which it becomes a resonance state with a certain width
long as the resonance states are isolated, the resonanc
of Breit-Wigner type with maximum atEa and width Ga
52k1Wa1Wa1. In this regime, the HamiltonianHeff is al-
most diagonal and the pole representation of theSmatrix ~6!
can be well approximated by

S5122ı(
a

k1Wa1Wa1

E2Ea1~ ı/2!Ga
. ~9!

Numerically it has been shown that Eq.~9! is valid as long as
the poles are in the near neighborhood of the real a
@33,40#.

As soon as the resonance states are overlapping, a r
tribution in the spectroscopic properties of the system ta
place due to the nondiagonal termsık1Wa1Wb1 of Heff . The
HamiltonianHeff has to be diagonalized,

Heff f̃a5@Ẽa2~ ı/2!G̃a#f̃a . ~10!

The pole representation of theS matrix now reads

S5122ı(
a

k1W̃a1W̃a1

E2Ẽa1~ ı/2!G̃a

~11!

where W̃a15^W1uf̃a&, and W1 is the first column ofW.
W̃a1 , Ẽa , and G̃a depend on the energy of the system a
W̃a1 are complex. The poles of theS matrix are obtained
from the solutions of the fixed-point equations

Ea5ẼauE5Ea
and Ga5G̃auE5Ea

. ~12!

They determine the energiesEa and widthsGa of the reso-
nance states. The eigenfunctionsf̃a of Heff are biorthogonal.
The resonances are no longer of Breit-Wigner type beca

of the energy dependencies ofW̃a1 and G̃a ~see@8,20#!.
Therefore the reflection probabilities at the energiesẼa of

the resonance states are determined by thecomplex energy-

dependent values W̃a1 and not by the real energy
independent coupling matrix elementsWa1. The energy de-
pendence ofW̃a1 ensures the unitarity of theS matrix ~11!.
The total coupling strength
06621
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G t5k1(
a

W̃a1W̃a15k1(
a

Wa1Wa1 ~13!

describes the coupling of the cavity to channel 1 at the
ergy E.

In Fig. 2, we show the trajectories of the eigenvalues
the Hamiltonian for a simulation withD591.6 mm ~at
maximum openingd5D). The solutions of the fixed-poin
equations~12! are marked on the eigenvalue trajectories.

E increases, first allG̃a(k) increase, while at largerE most

G̃a(k) decrease with increasingE and only theG̃a(k) of one
of the resonance states increases further withE. The results
show resonance trapping when the energyE of the system is
parametrically varied. Moreover, they show clearly that t
resonances are not of Breit-Wigner shape@corresponding to

Ẽa(k)' const, G̃a(k)' const#. In many cases, the energ
dependence is quite strong. It is caused by the unitarity of
S matrix leading to a narrowing of most resonances at
opening of the cavity.

III. WAVEGUIDE WITH SLIT

A. Theory

In Eq. ~6! the billiard scattering matrix was expressed
terms of an effective Hamiltonian for the case that the wa
guide is coupled directly to the billiard. Now we proceed
the situation met in the experiment that a slit aperture w
variable opening is placed within the waveguide~see Fig. 1!.

The scattering matrixS is now given by

S85ĝ1geıKL
11A

2
eıKLg22ıgeıKL

11A

2
GK~1

1ıAGK!21
11A

2
eıKLg, ~14!

where

A511~e2ıKL2ĝeıKL!212ĝeıKL ~15!

FIG. 2. The trajectories of the eigenvaluesẼa(k)2(ı/2)G̃a(k)
of the effective Hamiltonian for different statesa obtained by vary-
ing the energy. The open circles denote the solutions of the fix
point equations. The geometry is that of Fig. 1 withd5D
591.6 mm.
1-3
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~see Appendix B!. The matricesg and ĝ512g depend on
the opening of the slit@see Eq.~B8!#; with increasing slit
width g increases from 0 to 1.

Proceeding in the same way as before, we end up wi

S85ĝ1geıKL
11A

2
eıKLg

22ıgeıKL
11A

2
W†

1

E2Heff
WK

11A

2
eıKLg, ~16!

where the effective Hamiltonian now is given by

Heff5H2ıWKAW†. ~17!

In expression~17!, the properties of the billiard and the sl
enter at different places. The eigenvalues and eigenfunct
of the billiard have therefore to be calculated only once.
study the eigenvalues ofHeff in dependence on the width an
position of the slit, onlyA has to be recalculated. The co
pling vector between the system and lead with the slit at
positionL is, according to Eq.~17!, Vsl5AKAW, while it is
V5AKW in the case without a slit@see Eq.~7!#.

The position of the slit inside the lead introduces so
arbitrariness in the separation of the complete function sp
into the subspace of the functions of the billiard and
supplementary subspace of the functions of the environm
The part of the lead between the slit and the billiard m
belong to both subspaces: in the case of full opening it is
of the channel while it is part of the cavity if the slit i
closed. In order to keep the physical meaning of the eig
values ofHeff and to relate them to the poles of theSmatrix,
we have to consider the valueA in detail, to define the sys
tem and environment uniquely. Since only the first mode
propagating, only the behavior of the componentA11 is of
relevance in the present context.

According to Eq.~15!, A11 has poles at the complex va
ueskn5kn

r 1ki
r5mp/L1 i ln(ĝ11)/2L (m integer!. The case

L50 will not be discussed here in detail because experim
tally it cannot be realized and theoretically some proble
with the boundary conditions appear. ForLÞ0, the condition
kn

r 5mp/L describes a standing wave within the wavegu
with momentumkn

r appearing as an additional pole of theS
matrix. It may be looked upon as an additional state ofHeff
mixing with the other resonance states. The imaginary pa
the momentum may be related to the width of the state.
g→0, corresponding to closing the slit, the imaginary partk1

i

vanishes and the state becomes discrete.
When the slit opens totally, i.e.,g→1, from Eq. ~15! it

follows that A→1, and the imaginary part ofk1 diverges.
The extra peak inA11, arising from the resonance state l
calized in the waveguide between the billiard and the sli
g50, thus disappears and the state is immersed in the
space of channel wave functions representing the envi
ment of the system. Thus, not only the subspace by wh
the system is defined~the first termH of Heff) changes in
varying g from 0 to 1; the subspace of channel wave fun
tions into which the system is embedded atg51 ~open cav-
ity! is also different from that atg50 ~closed cavity!. When
06621
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the slit is opened, the coupling vectorsV are changing from
AKAW, showing a resonant behavior as a function of ener
to AKW, while is smoothly dependent on energy. In oth
words, the relation between the direct and resonant proce
changes on varyingg. In the case of a fully open slit (g

51,A51), the widthsG̃R
c of all the cavity states are inde

pendent of the position of the slit.
The eigenvalues ofHeff have a physical meaning onl

when the total function space is divided into the two su
spaces~system and environment! according to the following
criteria: the system containsall resonancelike phenomen
while the environment describes the smooth~direct! reaction
part in the energy region considered. This division was u
successfully by means of statistical methods for heavy nu
about 50 years ago@41,42#. In light nuclei also division into
the two subspaces is crucial for giving the eigenvalues
Heff a physical meaning. This point is discussed in detail
Ref. @8#. Due to the low level density, the resonance sta
keep most of their individual features, and cannot be trea
by statistical methods.

The numerical data forA, which will be discussed below
exhibit resonancelike features ofA(E) by which the division
of the complete function space into the two subspace
influenced. SinceA is complex, the term Im(WKAW†) gives
another contribution to Re(Heff) which causes shifts of the
resonances in the energy. In the following sections
present results of numerical simulations as well as of exp
mental studies which support the above discussion.

B. Numerical studies

For the numerics we use a widthD522.9 mm for the
waveguide, which is close to the experimental value. Th
different slit positions were taken atL55.5, 16, and 26 mm,
whereL is the distance between cavity and slit. Only the fi
channel moden51 was considered, i.e., 1.88,E/cm22

,7.52.
In Fig. 3 we show the real part ofk1A11 @see Eq.~15!# for

different g as a function of the energyE for the three differ-
ent slit positions. First we note that with increasing slit wid
(g→1) the curves approach a single curve for all slit po
tions. For smallg, however, the structure changes. The po
of A11 at Em5(mp/L)21(p/D)2 cause a resonancelike de
pendence as a function ofE for g,1 ~slit partly opened!.
This resonancelike behavior is an indication of the fact t
the boundary between the subspaces of the discrete and
tering states changes. For full opening of the slit (g51), A11
approaches 1, and the standing wave~the additional pole of
the S matrix! vanishes and becomes part of the environm
of the system consisting of the scattering wave functions.
analogous situation is discussed in detail for nuclei in R
@8#. As a result, the fixed-point solutions follow trajectorie
in energy space with increasing openingd that are different
for the different positionsL of the slit.

In the case ofL55.5 mm @Fig. 3~a!#, the resonancelike
behavior takes place atE@7 cm22. ThereforeA increases
monotonically with increasing opening of the slit~corre-
sponding to increasingg) for almost allE. As a consequence
the components of the coupling vectorsVsl5AKAW also
1-4
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EFFECTIVE HAMILTONIAN FOR A MICROWAVE . . . PHYSICAL REVIEW E 65 066211
increase monotonically with increasing opening for prac
cally all E. We therefore expect resonance trapping in
proaching the full opening.

In the case ofL516 mm, the first resonancelike behavi
is within the energy region of interest. At the resonanceA11
decreases strongly with increasing opening of the slit
,E/cm22,6.6). The width of the resonance ofA(E) in-
creases with increasing opening@Fig. 3~b!#. It is difficult to
decide whether this behavior ofA will increase or reduce the
probability of observing resonance trapping. Numerical st
ies have to be performed for the motion of the fixed-po
solutions.

In the case ofL526 mm@Fig. 3~c!#, the first resonance
like behavior becomes narrower and the second is appro
ing. In between there is a broad minimum. Due to the bro
minimum and the narrow maximum we expect a similar si
ation to that for L55.5 mm, at least in the range
,E/cm22,6.2.

FIG. 3. Re(k1A11) defined by Eq. ~15! for different g
(0.1,0.3,0.5,0.7,0.9) as a function of the energyE for L55.5 mm
~a!, 16 mm ~b!, and 26 mm~c!. The width of the channel isD
522.9 mm.
06621
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In Fig. 4, the motion of the fixed-point solutionsEa and
Ga in the energy region 5.0 cm22<Ea<6.0 cm22 is plot-
ted in dependence on the slit widthd for the three different
positions of the slit (L55.5, 16, and 26 mm!. For small
openingsd, the widths of allN states increase with increas
ing d for all values ofL. If d is further increased, howeve
different behavior is observed for the three cases conside
At L55.5 and 26 mm resonance trapping can clearly be s
in the resonances. AtL516 mm, on the other hand, ther
are only a few cases of resonance trapping. Obviously,
existence of the pole inA decreases the probability for trap
ping. At full opening of the slit (A51), theEa andGa of all
the resonance states are the same for all three positionsL of
the slit.

C. Experimental studies

A microwave reflection measurement was performed
the system shown in Fig. 1. The system can be considere
two dimensional, as long as the frequencyn,c/2h

FIG. 4. The calculated eigenvalues forL55.5 mm~a!, 16 mm
~b!, and 26 mm~c!. The open circles denote the eigenvalues at f
opening (d5D).
1-5
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518.75 GHz~or E/cm22,15.4), whereh58 mm is the
resonator height. In this case there is a one-to-one corres
dence between the wave functionc and the electric field
strengthEW z ~see, e.g.,@2#!.

In Fig. 5 experimental results for the three slit positions
L55.5, 16, and 26 mm are shown. The resonances have
obtained by direct fitting of the complex reflection coef
cients R(k) by a superposition of Lorentzians. Using th
centered time-delay analysis~CTDA! described in@37# simi-
lar results are obtained.

The differences in the trapping behavior are not as p
nounced as in the case of the numerics and it is hard to
them in Fig. 5. This is due to some differences between
experiment and the simulation arising from the external p
of the waveguide extending beyond the slit. In the expe
ment a small antenna induces the microwaves, and bey
that the waveguide is closed by a reflecting wall. This lea
to additional interferences between the broad resona
~whose wave functions extend into the external wavegu!

FIG. 5. The experimental eigenvalues, obtained by fitting
data to Lorentzians, forL55.5 mm~a!, 16 mm~b!, and 26 mm~c!.
The open circles denote the eigenvalues at full opening (d5D).
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and the modes in the external waveguide. In the simulatio
however, the external waveguide was assumed to be
nitely long, and no interferences between broad resonan
and modes in the external waveguide could occur. Additi
ally, the resonances acquire an extra contribution to
widths due to the wall absorption that was not taken in
account in the simulations.

Due to these differences, we cannot expect a quantita
agreement between simulation and experiment. We will fi
however, qualitative agreement for the influence of t
lengthL on the degree of resonance trapping.

To show the qualitative agreement we divided the exp
mental and the numerical resonances into three groups
cording to their behavior as a function of the opening of t
slit ~Table I!. The groups are defined as follows.

~1! Trapped: resonances decreasing in width at la
openings.

~2! Broad: resonances gaining width at the cost of
trapped ones at some openingd of the slit. A resonance is
classified as broad even if that resonance gets trappe
another resonance at largerd.

~3! All others.
The energy interval analyzed is 2.95 cm22<E

<6.85 cm22. The experimental resonances could only
analyzed for 0.001 cm22<Ga/2<0.1 cm22. We restricted
the analysis of the numerical ones to the same width wind
~Due to the wall absorption the experimental resonan
have some extra width. Hence we analyzed more resona
in the experiment than in the numerics. This can be s
from the number of analyzed resonances in Table I.!

The division into the three groups is done on the basis
a careful tracing of all eigenvalue trajectories of the re
nances as a function ofd.

Most notably, both experiment and theory agree with
spect to theL dependence of the trapping phenomenon: m
resonances get trapped atL55.5 and 26 mm than atL
516 mm in the experimental data as well as in the num
cal ones as is evident from Table I.

Summarizing, we state the following: given the diffe
ences between the experiment and the assumptions for
theoretical study, the agreement between theory and exp
ment can be considered as good.

IV. SUMMARY AND CONCLUSIONS

An effective HamiltonianHeff has been derived for a bil
liard coupled to a waveguide with a slit, depending exc

e

TABLE I. The resonances~analyzed with CTDA! divided into
three groups ‘‘trapped’’~T!, ‘‘broad’’ ~B!, and ‘‘others’’ ~O!. For
details see text.

Length Numerics/ Number of T B O T/
L ~mm! experiment resonances ~%! ~%! ~%! B1O

5.5 N 90 50 19 31 0.98
E 127 37 13 50 0.58

16 N 86 23 24 53 0.30
E 107 26 8 66 0.35

26 N 86 44 17 39 0.79
E 102 32 12 56 0.47
1-6
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sively on geometrical quantities.Heff has complex eigenval
ues, immediately giving the poles of theS matrix when the
resonances do not overlap. The opening of the slit en
multiplicatively in the coupling matrix elements between b
liard and waveguide. The eigenfunctions and eigenvalue
the billiard without waveguide have therefore to be calc
lated only once. For overlapping resonances, the two s
spaces~system and environment! must be carefully defined
before the energy-dependent eigenvalues ofHeff can be re-
lated to the poles of theS matrix by solving the fixed-point
equations. TheS matrix in pole representation is therefo
different for the different positions of the slit inside the lea

The theoretical formulas predict resonance trapping to
cur more strongly at certain distancesL between billiard and
slit than at others. The numerical results show resona
trapping to depend onL as predicted, and the experiments
a microwave billiard agree qualitatively with the numeri
results and theoretical predictions. The phenomenon of r
nance trapping thus generically entails deviations from
randomness of the system properties.
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APPENDIX A: S MATRIX OF A BILLIARD ATTACHED
TO A WAVEGUIDE

If an infinitely long waveguide is coupled to a billiar
~similar to the setup shown in Fig. 1!, it is suitable to intro-
duce a Green’s functionG(r ,r 8) with mixed boundary con-
ditions. If r or r 8 is located on the billiard wall, one ha
G(r ,r 8)50, and¹'G(r ,r 8)50 if they are located on the
opening.¹' is the normal derivative pointing in the directio
of the waveguide. The Green’s function is defined by

G~r ,r 8,E!5 K rU 1

E2H Ur 8L 5(
a

ca* ~r !ca~r 8!

E2ea
, ~A1!

where H is the Hamiltonian, with discrete eigenvaluesea
and corresponding eigenfunctionsca(r ). It obeys the inho-
mogeneous Helmholtz equation

~D1k2!G~r ,r 8!5d~r 2r 8!. ~A2!

The wave function describing the field distribution with
both the billiard and the channel obeys the homogene
Helmholtz equation

~D1k2!c~r !50 ~A3!

with the boundary conditionc(r )50 for r on the wall.
Multiplying Eq. ~A2! by c(r ), Eq. ~A3! by G(r ,r 8), tak-

ing the difference of the resulting equations, integrating o
r, and applying Green’s theorem, we obtain
06621
rs

of
-
b-

.
c-

ce

o-
e

he
up-

us

r

c~r 8!52E
S
G~r ,r 8!¹'c~r ! dr, ~A4!

where the integration is over the width of the lead. All oth
contributions to the surface integral disappear due to
boundary conditions. Equation~A4! holds for the case thatr 8
is a point within the billiard. Forr 8 on the boundary there is
an additional factor 1/2 on the right-hand side.

Applying a coordinate system with the positivex axis
pointing along the waveguide and they axis on the boundary
Eq. ~A4! reads

c~0,y8!5
1

2E2D/2

D/2

G~0,y; 0,y8!
]c~0,y!

]x
dy, ~A5!

where we have specialized Eq.~A4! to x850. Equation~A5!
establishes a relation between the wave function and its
mal derivative over the width of the lead. In the next step
expand the wave function within the lead in terms of chan
eigenfunctions

c~x,y!5 (
n51

`

fn~y!~ane2ıknx2bneıknx! ~A6!

where an and bn are the amplitudes of the incoming an
outgoing waves,

fn~y!55A
2

D
cos

np

D
y, n even,

A2

D
sin

np

D
y, n odd,

~A7!

and

kn5Ak22S np

D D 2

. ~A8!

In the situation realized in our experiments only the fi
mode can propagate, and all others are evanescent, i.ekn
5ıln , where

ln5AS np

D D 2

2k2 for n>2. ~A9!

Putting the ansatz~A6! into Eq. ~A5! we have

an2bn5ı(
m

Gnmkm~am1bm!, ~A10!

where

Gnm5
1

2E2D/2

D/2

dyE
2D/2

D/2

dy8fn~y!fm~y8!G~0,y;0,y8!.

~A11!

In matrix notation, Eq.~A10! reads

a2b5ıGK~a1b!, ~A12!
1-7
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which follows

b5Sa, ~A13!

where

S5
12ıGK

11ıGK
. ~A14!

We have thus obtained the scattering matrix in terms of
billiard Green’s function at the position of the lead.

Inserting expansion~A1! for the Green function into Eq
~A11! we get

Gnm5(
a

WanWam

E2Ea
, ~A15!

where

Wan5A1

2E2D/2

D/2

ca~0,y!fn~y!dy. ~A16!

Note thatEa and ca(x,y) are eigenvalues and eigenfun
tions of the billiard with mixed boundary conditions~Neu-
mann at the boundary to the lead, and Dirichlet elsewhe!.
In short-hand notation Eq.~A15! reads

G5W†
1

E2H
W. ~A17!

Now we expand the denominator in Eq.~A14! into a geo-
metric series and insert expression~A17! for G,

S5122ıW†
1

E2H
WK(

n50

` S 2ıW†
1

E2H
WKD n

5122ıW†
1

E2H (
n50

` S 2ıWKW†
1

E2H
WD n

WK.

~A18!

Summing up again the geometric series we end up with
scattering matrix of Eq.~6!.

APPENDIX B: S MATRIX WHEN A SLIT IS WITHIN
THE WAVEGUIDE

First we calculate the transmission and reflection prop
ties of the slit. Let

ce~x,y!5(
n

enfn~y!eıknx ~B1!

be a wave entering from the left, and

c r~x,y!52(
n

r nfn~y!e2ıknx ~B2!

and
06621
e

e

r-

c t~x,y!5(
n

tnfn~y!eıknx ~B3!

its reflected and transmitted fractions, respectively. Let
introduce the abbreviations

E
I
dy5E

2d/2

d/2

dy, E
II
dy5S E

2D/2

2d/2

1E
d/2

D/2D dy. ~B4!

We then obtain for the reflection coefficients

r n5E
II
ce~0,y!fn~y!dy5(

m
ĝnmem , ~B5!

where

ĝnm5E
II
fn~y!fm~y!dy. ~B6!

Analogously we get for the transmission coefficients

tn5E
I
ce~0,y!fn~y!dy5(

m
gnmem , ~B7!

where

gnm5E
I
fn~y!fm~y!dy. ~B8!

By means of Eqs.~B5! and~B7! it is guaranteed that the field
is zero on the walls of the slit, and continuous at the open
From the orthogonality of the channel eigenfunction one

gnm1ĝnm5dnm . ~B9!

Now let us assume that there is another wavece8(x,y) enter-
ing from the right with reflected and transmitted fractio
c r8(x,y) and c t8(x,y), respectively. The total field resultin
from a superposition of all contributions is now given by

c~x,y!5H (
n

fn~y!@~2r n1tn8!e2ıknx1eneıknx# ~ left!,

(
n

fn~y!@en8e
2ıknx1~ tn2r n8!eıknx# ~right!.

~B10!

Denoting as above the vector of amplitudes of the wa
propagating to the left and to the right on the left-hand s
by a,b, and on the right-hand side bya8,b8, and introducing
corresponding vectors for reflection and transmission am
tudes, we have from Eq.~B10!

a5t82r , b52e,
~B11!

a85e8, b85r 82t.

Equations~B5! and~B7! and the corresponding relations fo
the primed quantities read in matrix notation
1-8
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r 5ĝe, t5ge,
~B12!

r 85ĝe8, t85ge8.

Eliminating e,e8,r ,r 8,t,t8 from Eqs. ~B11! and ~B12!, we
obtain

S b8

a D 5SslitS a8

b D , ~B13!

where

Sslit5S ĝ g

g ĝ
D ~B14!

is the scattering matrix for the slit.Sslit is unitary as it should
be. This is a consequence of the projector properties ofg and
ĝ,

g25g, ĝ25ĝ, gĝ5ĝg50, ~B15!

following immediately from the definitions~B6! and ~B8!.
rs

lin

.

f
s

06621
Now we attach the waveguide to our previous billiard. L
us denote the scattering matrix of the billiard, including t
waveguide up to the slit, byS0, i.e.,

b5S0a. ~B16!

According to Eq.~A14! S0 is given by

S05eıKL
12ıGK

11ıGK
eıKL. ~B17!

The two additional phase factorseıKL account for the phase
shifts acquired by the waves during propagation within
waveguide. Combining Eqs.~B13! and ~B16! we obtain

b85S8a8, ~B18!

where

S85ĝ1gS0~12ĝS0!21g ~B19!

is the scattering matrix for the complete system includ
billiard, waveguide, and slit. Inserting new expression~B17!
for S0 into Eq. ~B19!, we now end up with Eq.~14!.
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@2# H.-J. Stöckmann, Quantum Chaos—An Introduction~Cam-
bridge University Press, Cambridge, England, 1999!.

@3# C. Mahaux and H.A. Weidenmu¨ller, Shell-Model Approach to
Nuclear Reactions~North-Holland, Amsterdam, 1969!.

@4# H. Alt et al., Phys. Lett. B366, 7 ~1996!.
@5# F. Haakeet al., Z. Phys. B: Condens. Matter88, 359 ~1992!.
@6# N. Lehmann, D. Saher, V.V. Sokolov, and H.-J. Somme

Nucl. Phys. A582, 223 ~1995!.
@7# Y.V. Fyodorov and H.-J. Sommers, J. Math. Phys.38, 1918

~1997!.
@8# I. Rotter, Rep. Prog. Phys.54, 635 ~1991!.
@9# S. Taruchaet al., Phys. Rev. Lett.77, 3613~1996!.

@10# R. Akis, D.K. Ferry, and J.P. Bird, Phys. Rev. B54, 17 705
~1996!.

@11# J.P. Birdet al., J. Phys.: Condens. Matter9, 5935~1997!.
@12# I.V. Zozoulenko, R. Schuster, K.-F. Berggren, and K. Enss

Phys. Rev. B55, R10 209~1997!.
@13# L. Wirtz, J.-Z. Tang, and J. Burgdo¨rfer, Phys. Rev. B56, 7589

~1997!.
@14# L. Wirtz, J.-Z. Tang, and J. Burgdo¨rfer, Phys. Rev. B59, 2956

~1999!.
@15# J.P. Birdet al., Phys. Rev. Lett.82, 4691~1999!.
@16# Y.-H. Kim, M. Barth, H.-J. Sto¨ckmann, and J.P. Bird, Phys

Rev. B65, 165317~2002!.
@17# R.G. Nazmitdinov, K.N. Pichugin, I. Rotter, and P. Sˇeba, Phys.

Rev. E64, 056214~2001!.
@18# R.G. Nazmitdinov, K.N. Pichugin, I. Rotter, and P. Sˇeba,

e-print cond-mat/0111301~unpublished!.
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